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Abstract 
We test whether a single housing market exists across sixteen cities covering two countries, 
Australia and New Zealand. Distances between these cities are vastly greater than commuting 
distances. We define a single housing market as one in which a single stochastic trend describes 
the long run path of real house prices in all cities. A strong form single housing market occurs 
when an innovation to the stochastic trend affects house prices across all cities multiplicatively to 
an equal degree. A weak form occurs when an innovation to the stochastic trend affects house 
prices in all cities, but not to an equal degree. We find that the sixteen housing markets are 
characterised by a weak form single housing market. The dynamic structure of adjustment 
reveals three groups of cities. House price shocks are first reflected in the price dynamics of a 
leading group of Australian cities (including Melbourne and Sydney), then flow to a group of 
follower cities comprising peripheral Australian and major New Zealand cities, and then to a 
group of laggard cities within New Zealand. Our theoretical model demonstrates how a weak 
form single housing market may arise due to differences between cities in house price responses 
to land prices, migration responses to house prices and/or land price responses to migration 
flows. 
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1. Introduction 

We examine whether a single housing market exists across sixteen cities covering two 

countries, Australia and New Zealand (Australasia). Distances between almost all of these cities 

are vastly greater than commuting distances. For instance, Perth is over 2,000 kilometres (kms) 

from its nearest large city neighbour, Adelaide, and is over 5,000kms from the New Zealand 

cities. If there is a single housing market across these cities, then the economic forces that lead to 

such convergence must be other than commuting arbitrage forces that have been posited as 

driving convergence in densely populated countries such as the United Kingdom. Other possible 

convergence forces may include migration flows or similar demand and supply conditions across 

the two countries.   

We define a single housing market as one in which a single stochastic trend determines 

the long run path of real house prices in all cities. Local shocks may still impact on prices in each 

city in the short run, but these shocks are stationary and so do not affect long run house prices 

of a city.1 We adopt a strong and a weak definition of a single housing market. The strong form 

occurs when an innovation to the single stochastic trend affects house prices across all cities 

multiplicatively to an equal degree. The weak form occurs when an innovation to the single 

stochastic trend affects house prices in all cities, but not to an equal degree. In the strong case, 

ratios of real house prices between all city pairs stay the same in the long run, while in the weak 

case house price ratios between cities will tend to diverge even though they are affected by the 

same long run influences. 

The issue of whether a single housing market exists across two countries is important for 

understanding policy impacts. If a single housing market is observed across both countries, then 

macroeconomic policies must either have been convergent across the two countries or they have 

been incapable of independently controlling real house prices despite both countries running 

independent monetary and fiscal policies. (Macroeconomic policies could still, however, affect 

the short run path of prices relative to the long run trend.) We show that if the strong form of a 

single market occurs, then housing and land supply and migration elasticities must have had 

identical long run effects over multiple regions. If the weak form of a single market occurs, then 

supply (including regulatory policies) or migration responses may have modified the impact of 

identical shocks across cities.    

                                                 
1 Strictly, we examine the natural logarithm (log) of real house prices, so our analysis is in terms of the long run ratio 
of city real house prices. By ‘real’ house prices, we mean house prices relative to the aggregate price of local goods 
and services.  
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Our focus is on eight main cities in each of Australia and New Zealand. The Australian 

cities comprise the six state capitals (Sydney, Melbourne, Brisbane, Perth, Adelaide, Hobart), the 

Northern Territory capital (Darwin) and the Federal capital (Canberra). The New Zealand cities 

comprise the eight largest metropolitan urban areas (Auckland, Wellington, Christchurch, 

Hamilton, Tauranga, Dunedin, Napier-Hastings, and Palmerston North). 

Our methodology extends the principal components methodology outlined in Holmes 

and Grimes (2008) to include dynamic factor analysis methods. This approach enables us to test 

whether there exists a dynamic relationship that links multiple factors underlying house price 

movements across cities over time, and we indeed find such a relationship. After accounting for 

these dynamic relationships, we establish that the sixteen cities constitute a single weak form 

housing market. 

Section 2 of the paper outlines prior studies of Australian and New Zealand housing 

markets plus convergence-related studies in the US and the UK. Section 3 briefly discusses the 

Australian and New Zealand housing markets and describes the New Zealand and Australian 

data that we use. Section 4 presents our methodology and empirical results, while section 5 

provides economic interpretation of our econometric results. The Appendix contains the 

canonical housing market model that we use to interpret our results.  

 

2. Prior Studies 

A limited number of prior studies have interpreted movements in regional house prices 

within each of Australia and New Zealand. Maher (1994) found spatial variability in Australian 

house prices both at an intra-metropolitan (suburban) scale and at an inter-metropolitan (city) 

scale. Using cointegration and causality testing, Smyth and Nanda (2003) find weak evidence of 

market segmentation in house prices in the South East and East Coast of Australia with few 

cointegrating relationships between capital cities. In terms of causality, their results suggest that 

housing prices in Melbourne and Adelaide Granger-cause housing prices in Canberra and 

housing prices in Perth and Sydney Granger-cause housing prices in Brisbane. In a similar vein 

Slade (2006) finds evidence of both linkages and segmentation. Luo et al. (2007) find evidence 

that is supportive of a ripple effect being present among Australian cities with Sydney and 

Melbourne being present in the top tiers. Liu et al. (2008) use VAR and impulse-response 

analysis to show that house price diffusion is such that the most important subnational markets 

in Australia do not point to Sydney, but rather towards Canberra and Hobart, while the Darwin 
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market plays a role of buffer. More recently, Ma and Liu (2013) consider the importance of 

spatial heterogeneity and autocorrelations in house price behaviour. Using a spatio-temporal 

approach they argue that demographic distance, constructed by demographic structure and 

housing market scales, can be used to investigate the house price convergences in Australian 

capital cities. Their results confirm that the house price levels in Canberra, Brisbane and Perth 

converge to those in Sydney. Ma and Liu (2015) also develop a spatio-temporal autoregressive 

model based on a framework of panel regression methods. Their results confirm that house 

prices in Sydney approach a steady state in the long run, whereas house prices in Brisbane, 

Canberra, Melbourne and Perth do so with lower confidence. However, little evidence supports 

the existence of long-run equilibrium in the house prices of Adelaide, Darwin and Hobart.  

In the case of New Zealand house prices, Grimes et al (2003) found that New Zealand 

house prices had increased more rapidly in higher priced (generally urban) regions than in lower 

priced regions since 1991. Hall et al (2006) found that while regional house price cycles have 

often coincided with national housing cycles, there have also been deviations in cycles across 

regions. Using a principal components decomposition of regional house price series, Grimes et al 

(2010) isolated one clear non-stationary (static) factor affecting all regions of New Zealand, with 

ambiguous evidence of a second factor.  Each of these studies indicates the possibility of 

multiple housing markets within (and hence across) each country. Shi et al. (2010) conclude that 

in the long run, a ripple effect is most likely constrained within regions. They find little evidence 

to suggest that the ripple effect spreads nationally between main regional centres. The results 

support the theory that the ripple effect is likely to be caused by a region's internal economic 

factors rather than migration and spatial arbitrage.  

In an alternative approach, Grimes and Hyland (2015) model New Zealand’s regional 

housing markets based on fundamentals, using a four equation system. The equations for house 

prices (an inverted demand equation), housing supply, land prices and rent interact to determine 

the four outcomes. A modified version of this model, that has closed form solutions, is outlined 

in the Appendix. This model demonstrates how a shock that affects all cities identically can 

nevertheless produce long run house price outcomes that differ across cities, depending on the 

impact of land prices on house prices, the reaction of land prices to population and the reaction 

of population (migration) to house prices. It therefore illustrates how a weak form single housing 

market may eventuate even with identical shocks.  

Several United Kingdom studies have analysed whether house prices are convergent 

across regions. A specific focus has been on whether there is a “ripple effect”, in which a shock 
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to house prices in London spreads out dynamically to other regions according to contiguity.2  In 

the UK context, the principal explanation for a ripple effect is that an upward price shock in 

London causes commuters to purchase houses further from the city so raising prices in 

neighbouring locations which, in turn, spreads to house prices in their neighbouring locations, 

and so on. Holmes and Grimes (2008) undertake unit root testing of the first principal 

component of regional-national house price differentials and find that all UK regional house 

prices are driven by a single common stochastic trend. Using a pairwise unit root testing 

approach in assessing the percentage of unit root rejections among all house price differentials, 

Abbott and De Vita (2012) investigate the long-run convergence of district-level house prices in 

Greater London. No overall multidistrict long-run convergence is found. Some evidence of 

district-level segmentation of house prices in Greater London is found, with the sub-group of 

the boroughs contiguous to the ‘City of London’ district and the wider ‘central’ sub-market 

emerging as the clubs with the highest rate of convergence. Abbott and De Vita (2013) also find 

pairwise evidence against long-run house price convergence across the UK regions. In contrast 

to these studies, Tsai (2014) using panel-based unit root tests indicates that the relative price and 

volume ratios show constancy, signifying that long-run equilibrium relationships exist between 

the regional and national housing markets in the UK. Cook (2012) finds that β-convergence is 

not detected over the whole UK sample period available, but it is observed over the housing 

market cycle, with overwhelming evidence of convergence detected, particularly during the 

downturn.  

Looking at studies of regional house price convergence in the US, Clark and Coggin 

(2009) perform an unobserved components structural time series analysis of nine regional 

indexes and two super-regional factors and fit a classic “smooth trend plus cycle” model. The 

evidence for regional convergence is mixed, with little evidence for the first super-regional factor 

and some examples of relative convergence within the second factor. Support for a simple error 

correction model for regional house prices in their study is mixed. Kim and Rous (2012) study 

house price convergence in panels of US states and metropolitan areas. They find little evidence 

of overall convergence, but strong evidence of multiple convergence clubs. Holmes et al. (2011) 

examine long-run house price convergence across US states using a pairwise approach. They find 

evidence in favour of convergence such that speed of adjustment towards long-run equilibrium 

is inversely related to distance. Barros et al. (2014) examine the degree of persistence in the ratio 

                                                 
2 For other UK studies, see: Meen (1999), Cook and Thomas (2003), Cook (2003, 2005a, 2005b), Drake (2005), 
Holmes (2007). For studies of other countries, see: Gallet (2004), Gros (2007), Chien (2010), Burger and Van 
Rensburg (2008), Fadiga and Wang (2009). 
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of state house price to U.S. house price indices using fractional integration and autoregressive 

models.  The results provide mixed evidence on the degree of convergence in housing prices 

across the U.S.  

Many of the above studies use time series techniques based on tests of cointegration 

across regional house price indices to examine whether the ripple effect reflects short run 

adjustments or whether long run divergences remain across regions. One problem in interpreting 

studies using this methodology in cases where divergence is found, is that the divergence result 

may be the result of adopting tests that have low power to reject the null of no cointegration.3  

The factor-based tests that we use are less subject to this problem than earlier forms of 

cointegration tests by exploiting the panel nature of the dataset. Our methodology also enables 

us to examine dynamic relationships amongst variables enabling us to distinguish whether 

multiple factors, if they exist, are dynamically related to one another. 

 

3. Data 

We focus on eight metropolitan areas (cities) within each country: Sydney (SYD), 

Melbourne (MEL), Brisbane (BRI), Adelaide (ADL), Perth (PTH), Hobart (HOB), Darwin 

(DRW), Canberra (CNB), Auckland (AKL), Wellington (WEL), Hamilton (HAM), Tauranga 

(TAU), Hastings (HAS),4 Palmerston North (PMN), Christchurch (CHC), and Dunedin (DUN). 

There is an equal balance of Australian and New Zealand cities in the panel to ensure that the 

factor analysis is not biased towards one country. For each city we deflate the house price index 

by a consumer price index. We refer to these as real house prices indices. Each is normalized to 

one at the beginning of the sample. For the Australian cities we obtain a CPI for each individual 

city from the Australian Bureau of Statistics (ABS). Comparable data for the New Zealand cities 

is lacking, and so we use the national CPI from Statistics New Zealand (SNZ).5 

We obtain quarterly house price data for New Zealand cities from Quotable Value New 

Zealand (QVNZ, a state owned enterprise) and for Australian cities from the ABS. In each case, 

the series are quality-adjusted and are recognised as the official or principal house price series for 

                                                 
3 Grimes et al (2010) provide an example of rejection of cointegration for two obviously closely related real house 
price series.  
4 We select Hastings for the Napier-Hastings metro area because it is slightly larger than Napier. House prices in the 
twin cities follow each other very closely.  
5 We make no exchange rate adjustment when comparing trans-Tasman house prices since we are examining 
whether the relative price of houses to other goods and services moves similarly in the long run across regions. 
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their respective country’s cities.6 The ABS data are available from 1986q1 onwards while QVNZ 

officially released data are available from 1989q4 onwards. We use data through to 2015q1, the 

most recent data available at date of commencement of the research. The New Zealand series 

have been backdated to 1986q1 using QVNZ’s median house sale price series for each city over 

1986q1 – 1989q4. Grimes and Young (2010) demonstrate that alternative methods of quality 

adjustment produce indices with very similar long run properties, with only minor short run 

deviations. Given that our interest is in long run outcomes, the precise method of quality 

adjustment used by each of ABS and QVNZ therefore makes little difference for our analysis.  

 

Figure 1: Real House Prices, 16 Cities (1986q1 = 1.0) 

 

Figure 1 graphs the sixteen real house price series split between the Australian and New 

Zealand cities, for our sample period (1986q1 – 2015q1). The time series trend upwards over 

time (indicating that house prices grew at a much faster rate than the general price level over the 

sample period) and are clearly non-stationary, as confirmed by the Augmented Dickey-Fuller 

(ADF) tests presented in Table 1, in which fifteen of the sixteen cities are estimated to be 

integrated of order one. (For the remaining city, Auckland, we can reject stationarity if we do not 

include a time trend, but cannot reject stationarity about a linear trend.) 

From Figure 1, we observe divergence in real house price ratios across cities within each 

country, while also observing broadly similar patterns across the two countries. Focusing on two 

major cities in each country, Figure 2 graphs real house prices for Sydney and Melbourne in 

Australia, and Auckland and Wellington in New Zealand. Over the first part of the sample, 

Wellington and Sydney prices move together; over the full sample, Auckland appears to co-move 

                                                 
6 For analyses of methods to control for housing quality in house price indices see, for Australia: Abelson and 
Chung (2005) and Hansen (2009); and, for New Zealand: Grimes and Young (2010). 
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with Melbourne and Sydney. These full sample co-movements again suggest that house price 

trends may not be country-specific, while some intra-country divergences may be apparent. 

 

Table 1: Estimated ADF Coefficients of (log) Real House Prices 

City  levels (constant and trend) differences (constant) 
SYD 0.9417 0.5586*** 
MEL 0.9663 0.3580*** 
BRI 0.9753 0.6784*** 
ADL 0.9754 0.414*** 
PTH 0.9735 0.6856*** 
HOB 0.9729 0.6007*** 
DRW 0.9470 0.4958*** 
CNB 0.9703 0.5514*** 
AKL 0.9017*** 0.6369*** 
WEL 0.9719 0.5184*** 
HAM 0.9487 0.5974*** 
TAU 0.9619 0.3731*** 
HAS 0.9686 0.4767*** 
PMN 0.9430 0.4752*** 
CHC 0.9568 0.6127*** 
DUN 0.9648 0.6395*** 

Notes: The ADF coefficients presented are the estimated coefficients on the lagged dependent variable in 
an ADF equation (where lags are selected by the BIC with a maximum of 8 lags); *** denotes significantly 
less than unity at the 1% level. 
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Figure 2: Real House Prices, 4 Cities (1986q1 = 1.0) 

 

4. Methodology and Econometric Results 

Let ݔ௜,௧ denote the natural logarithm of the real house price index in city i at time t. We 

begin with a general static approximate factor structure of the form ݔ௜,௧ = ௧݂ᇱߜ௜ + e௜,௧ = ∑ ௦݂,௧ߜ௦,௜ + e௜,௧௥௦ୀଵ      (1) 

where ௧݂ is an r x 1 vector of unobserved common factors, ߜ௜ is a vector of factor loadings and e௜,௧ is an idiosyncratic component that is weakly dependent in the cross sectional and time series 

dimensions. The static factor model nests a dynamic factor structure of the sort given in 

equation (2) below.  

Because each time series of (log) real house prices ݔ௜,௧ is non-stationary, we follow the 

Bai and Ng (2004) approach for estimating the factor structure (1). This general approach 

permits both the common factors and the idiosyncratic components to be I(1). We first-

difference each time series in the panel to ensure that it is I(0). We then estimate the factor 
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number r using the Bai and Ng (2002) model selection criteria. Based on the first-differenced 

data we estimate the factor structure by principal components, and take the cumulative sum of 

the common factors and idiosyncratic components. We then apply unit root tests to each of the r 

(re-cumulated) common factors, and panel unit root tests to the (re-cumulated) idiosyncratic 

components, in order to determine which components of the factor structure (1) generate the 

observed non-stationary behavior in the cross section of time series.  

 

4.1. Factor Number Estimation 

Given the relatively constrained cross-sectional dimension of the panel, we allow for a 

maximum of four common factors. The Bai and Ng (2002) IC2(k) criterion selects two factors, 

while the IC1(k) and IC3(k) criteria select the maximum number of factors . Given that the IC2(k) 

criterion is the most conservative, and given the limited cross sectional dimension of the panel 

(n=16), we choose to model two common factors.7 Figure 3 exhibits the two (re-cumulated) 

estimated common factors. 

Figure 3 demonstrates that the first common factor exhibits much more long-run 

variation than the second common factor. We fit the standard ADF regression to each time 

series, using the Schwarz criterion to select the number of lags. For the first estimated factor the 

t-statistic (with only a constant in the ADF regression) is -0.495, with an associated p-value of 

0.887. When a trend is included in the ADF regression the t-statistic is -2.16, with an associated 

p-value of 0.505. Thus we accept the null of a unit root in the first estimated common factor. 

The second factor exhibits much less persistence than the first. The t-statistic from the 

ADF regression is -1.844 (with a p-value of 0.358), indicating acceptance of the null of a unit 

root. However, when we augment the ADF regression with a linear trend, the t-statistic is -3.402, 

with an associated p-value of 0.056, which leads to a rejection of the null hypothesis of a unit 

root at the 10% level. In terms of subsequent modelling it is thus unclear whether we should 

treat the second common factor as I(1) or trend-stationary. We return to this issue below after 

analyzing the persistence in the idiosyncratic components. 

  

                                                 
7 When the idiosyncratic components exhibit dependency or distributional heterogeneity, the Bai and Ng 
(2002) criteria often over-select the factor number in small samples (Greenaway-McGrevy, Han and Sul, 2012a; 
2012b). Serial dependence in particular is likely to be a problem in our dataset. 
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Figure 3: Re-cumulated Common Factors 

 

To test non-stationarity in the re-cumulated estimated idiosyncratic components we 

apply a Levin, Lin and Chu (2002) panel unit root test. The test imposes a common root on the 

different time series but permits heterogeneity in the short-run dynamics of the AR(p) processes. 

We apply the Schwarz criterion to each time series in order to select the lag order for the AR(p) 

model, and we allow for both time series and cross sectional heteroskedasticity by adopting 

White standard errors. The resultant t-statistic is -7.914, which is well beyond the conventional 

critical values of the Normal distribution, indicating a rejection of the null hypothesis. We also 

apply the Choi (2001) individual-based panel unit root test, again using the Schwarz criterion to 

select the AR(p) lag order for each time series in the panel. The test-statistic (based on the sum 

of the natural log of the p-values of each individual DF statistic) is 3.509, which is statistically 

different from zero at the 1% level. The null of a common unit root is again rejected. We 

therefore proceed treating the idiosyncratic components in (1) as being stationary. The 
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stationarity of the idiosyncratic components implies that our decision to include just two 

common factors does not lead to the omission of any non-stationary common factor. 

With stationary idiosyncratic components but at least one non-stationary common factor, 

the panel follows a common trend representation, with the common trends being the I(1) 

common factors. We can gain more precise estimates of the common factors by extracting them 

directly from ݔ௜,௧  (i.e., we need not first-difference the data; see Bai, 2004). Figure 4 exhibits the 

resulting two common factors. Evidently the first factor continues to exhibit more long run 

variation than the second factor. 

We re-estimate ADF regressions as before in order to test for unit roots in the two 

estimated factors. For the first factor, the t-statistic is -0.515 with an associated p-value of 0.883 

(with only a constant in the regression). For the second factor we have a t-statistic of -3.621 with 

a p-value of 0.007 (with only a constant in the regression), meaning a rejection of the null 

hypothesis of a unit root at the 5% level. This is strong evidence that the second factor extracted 

from the data should be treated as I(0). Our economic interpretation of this result follows in the 

next section. 

Table 2 exhibits the estimated loadings for each city on the two estimated factors. Bold 

face font indicates statistical significance at the 5% level. Standard errors are calculated using a 

Newey-West HAC estimator (with lag truncation set to 8 quarters and an Epanechnikov 

weighting kernel), and treating the first factor as I(1) and the second factor as I(0).  Note that all 

loadings on the first factor are positive and significant, ranging from 0.22 to 0.42. Only eleven of 

the sixteen loadings on the second factor are significant. Five of the Australian cities load 

positively and significantly onto the second factor, whereas six of the eight NZ cities (i.e. all 

cities other than Auckland and Wellington) load negatively and significantly onto the second 

factor. We interpret this pattern further in the final section. 
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Figure 4: Common Factors Derived from Levels Data  

 

 

Table 2: Estimated Factor Loadings 

  1st Factor 2nd Factor 
Sydney 0.28 0.07 
Melbourne 0.42 0.11 
Brisbane 0.37 0.02 
Adelaide 0.30 0.06 
Perth 0.41 0.02 
Hobart 0.35 0.01 
Darwin 0.39 -0.03 
Canberra 0.32 0.05 
Auckland 0.33 -0.02 
Wellington 0.28 0.01 
Hamilton 0.27 -0.06 
Tauranga 0.31 -0.05 
Hastings 0.32 -0.04 
Palmerston North 0.22 -0.04 
Christchurch 0.32 -0.04 
Dunedin 0.33 -0.04 

1985 1990 1995 2000 2005 2010 2015 2020
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4.2. Dynamic Factor Structure 

We now consider whether the common factor structure (1) nests a dynamic factor model 

of the general form ݔ௜,௧ = ∑ ௜,௦௣௦ୀ଴ߚ′௧ି௦ܨ + e௜,௧     (2) 

where the m x 1 vector of dynamic factors ܨ௧ is a subset of the static factors ௧݂, so that m < r.  

Because r is set to two in our case, we can have a single dynamic factor underlying the static factor 

structure. 

We use the Bai (2004) IPC in order to select the number of common factors underlying 

the panel ݔ௜,௧. In the presence of a dynamic factor structure with I(1) common factors the IPC(k) 

criteria select the number of dynamic factors with probability one in large samples (see Theorem 

5 of Bai, 2004). Both the IPC1(k) and IPC2(k) select a single common factor, suggesting a dynamic 

factor model. 

Further analysis suggests the presence of a single, dynamic factor structure underlying the 

static, two factor model. Consider the following two-lag version of the dynamic factor structure.  ݔ௜,௧ = ௜,଴ߚ௧ܨ + ௜,௣ߚ௧ି௣ܨ + e௜,௧     (3) 

for some p > 0, where ܨ௧ denotes the single dynamic factor. This structure would yield a two 

factor static model. This model can be re-written as ݔ௜,௧ = ௜,ଵߛ௧ܨ + ∆௣ܨ௧′ߛ௜,௣ + e௜,௧     (4) 

where ∆௣ܨ௧ = ௧ܨ − ௜,ଵߛ ,௧ି௣ܨ = ௜,଴ߚ + ௜,௣ߛ ௜,௣ andߚ =  ௜,௣. To further examine the potentialߚ−

of a dynamic factor representation, we compare the second common factor to the pth difference 

of the estimated first common factor (each extracted from ݔ௜,௧). To select p we estimate (3) for 

each p=1,2,…,24, and select the lag order p by maximizing the R-squared of the regression (note 

that the number of regressors does not vary across the candidate models under consideration). 

This procedure yields a lag order of 17 quarters (or approximately 4 years).  

Figure 5 exhibits ൛∆௣	 መ݂ଵ,௧ൟ௧ୀ௣ାଵ்
 against the second common factor	൛ መ݂ଶ,௧ൟ௧ୀ௣ାଵ்

. Both 

time series have been standardized to have unit variance. Both factor estimates were extracted 

from the panel data in levels. The correlation between the two time series is 0.49.  
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Figure 5: Second Factor versus Differenced First Factor (p=17) 

 

We run Granger causality tests based on a bivariate VAR of the two time series. The 

Schwarz criterion selects three lags for the VAR. We can easily reject the null that ൛ መ݂ଶ,௧ൟ௧ୀ௣ାଵ்
 

does not Granger-cause ൛∆௣	 መ݂ଵ,௧ൟ௧ୀ௣ାଵ்
 at conventional significance levels (the p-value of the 

block exogeneity restriction is 0.002), but can reject Granger-casuality in the other direction. 

Meanwhile the Akaike information criterion is minimized when five lags are included in the 

VAR. Under this model specification, we can again reject the null that ൛ መ݂ଶ,௧ൟ௧ୀ௣ାଵ்
 does not 

Granger-cause ൛∆௣	 መ݂ଵ,௧ൟ௧ୀ௣ାଵ்
 (with a p-value of 0.0001) as well as the null that ൛∆௣	 መ݂ଵ,௧ൟ௧ୀ௣ାଵ்

 

does not Granger-cause ൛ መ݂ଶ,௧ൟ௧ୀ௣ାଵ்
 at the 5% significance level (the p-value of 0.048). There is 

therefore strong evidence to suggest the presence of a dynamic factor structure.  
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5. Interpretation and Conclusions 

The results of section 3 demonstrate that the sixteen cities considered across Australia 

and New Zealand possess a single non-stationary factor that affects real house prices in all the 

cities. Thus there is just one aggregate source of shock that drives the non-stationary trend 

component of all sixteen cities across the two countries. All other idiosyncratic shocks to city 

prices are stationary and so their effects whither in the long run. 

The dynamic structure of price adjustment, however, reveals a more differentiated 

pattern. Cities with negative loadings on the second factor lag behind the other cities, whereas 

cities with positive loadings lead the other cities.8 Consistent with their economic pre-eminence 

within Australasia, Melbourne and Sydney lead the other 14 cities. On average, Australian cities 

(with an average second factor loading of 0.039) lead the New Zealand cities (with an average 

loading of -0.035). However, Auckland, Wellington, Perth, Hobart and Darwin each have second 

factor loadings that are not significantly different from zero. Thus there are three groups of cities 

in terms of price dynamics: leaders (Melbourne, Sydney, Adelaide, Canberra, Brisbane9); 

followers (Perth, Hobart, Wellington, Auckland, Darwin); and laggards (Dunedin, Christchurch, 

Palmerston North, Hastings, Tauranga, Hamilton).  

All leader cities are within Australia and all laggards are within New Zealand, while the 

(mid-group) followers comprise a mix of Australian and New Zealand cities. The cities within 

this group are all geographically very distant and/or separated by water, from the core Australian 

cities of Sydney and Melbourne. Together, these results indicate that non-stationary shocks to 

Australasian house prices are first experienced in the major Australian cities, then flow through 

to the more peripheral Australian cities plus Auckland (New Zealand’s largest city) and 

Wellington (New Zealand’s capital city), and subsequently flow through to the more peripheral 

New Zealand cities. 

There are no other common sources of non-stationary influence on city house prices, 

and all idiosyncratic city house price shocks are found to be stationary. However, cities have 

                                                 
8 The principal components estimator consistently estimates the column space of the common factors, meaning that 
in general the factor loadings can only be estimated up to a linear rotation (Bai, 2003). In the general case it is 
therefore difficult to make statements about the sign and magnitude of the true factor loadings based on the 
estimated loadings. However, in this particular case we can make such statements, subject to the restriction that the 
estimated factors and loadings are normalized so that each time series loads positively onto the first common factor. 
(Note this normalization holds in our case.) Then, if the first factor is I(1), the second estimated factor must 
consistently estimate the second common factor up to a positive linear scaling; it cannot be a linear combination of 
the I(1) and I(0) factors, since in this case it would itself be I(1) in the limit. This implies that the second estimated 
loadings share the same sign as the true second loadings in large samples. 
9 Brisbane’s second factor loading is significantly different from zero but is small in absolute value so may 
alternatively be grouped as a follower. 
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different responses to the first (non-stationary) factor implying that house price ratios diverge in 

response to innovations in this factor. The average first factor loading across the eight Australian 

cities, at 0.355, is higher than the average loading for the New Zealand cities, at 0.298.  Thus a 

positive innovation to this factor raises real house prices in Australian cities, on average, by more 

than in New Zealand cities. Nevertheless, there is again not a clear country bifurcation: Sydney 

has lower responsiveness to this factor than do five of the New Zealand cities, while Auckland 

has greater responsiveness than do three of the Australian cities. The greatest city-pair 

differential sees Melbourne’s loading on the first factor being almost twice that of Palmerston 

North. Thus we observe a weak form of a single housing market in which there is a single source 

of non-stochastic shock but the impact of the shock differs across cities. This pattern leads to 

divergence in long run real house prices across cities over time, despite the existence of only a 

single source of non-stationary shock. 

What economic forces may explain the finding of a single source of non-stationary 

innovations to house prices across all the cities, coupled with differing long run (and dynamic) 

responsiveness to these innovations? Distances between the cities rule out a commuter arbitrage 

explanation for the observed patterns. Instead, as detailed in the Appendix, the differential long 

run real house price effect – in the face of an identical shock – may be due to differences in 

house price responses to land prices, migration responses to house prices or to land price 

responses to migration flows. The latter may reflect either geographical constraints (Saiz, 2010) 

or planning constraints (Grimes and Liang, 2009; Saks, 2008; Gyourko, Saiz and Summers, 2008; 

Kulish et al., 2012) each of which may affect the effective degree of land availability and hence 

affect the elasticity of land prices to population flows. The theoretical role of migration flows in 

each of these explanations accords, at least intuitively, with the nature of the dynamic responses 

that we estimate. 

Our findings also have implications for macroeconomic policy. Given the differential 

effects of the non-stationary factor on house prices within each of Australia and New Zealand, 

and given the similarity of response between cities across the two countries, there is little 

evidence that the countries’ independent monetary and/or other macro-economic policies have 

been instrumental in determining long run real house price outcomes in either country. In 

interpreting this finding, recall that our focus is on real house prices, a relative price variable. The 

implication that monetary policy has been ineffective in controlling this relative price variable is 

consistent with standard monetary theory, i.e. with the classical dichotomy. 

A natural extension of our research is to analyse whether Australasian real house prices 

are hostage to international forces in a manner similar to the observed co-dependence between 
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New Zealand and Australian city house prices. A second extension would be to examine the 

economic forces that determine individual cities’ differential responsiveness to the non-stationary 

stochastic shocks and, in particular, to examine whether differential planning regimes help 

explain these differentials. We leave these extensions to future work. 
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Appendix: Canonical Long Run Housing Market Model 

We present a simple model, that enables closed form solutions, explaining long run 

house price and other housing market outcomes. The approach is based on Grimes and Hyland 

(2015) and Grimes and Aitken (2010), which in turn reflect a range of prior housing models. We 

add a further relationship to these prior studies – equation (2) – specifying population as a 

function of house prices. The (long run) model comprises four equations as follows: ℎ݌ = ݌݋݌	ߙ − ܪ	ߙ + ݌݋݌ (1)																													ଵߝ = ݌ℎ	ߚ + ݌(2) ℎ																																									ଶߝ = ݌݈	ߛ + ݌݈ (3)																																													ଷߝ = ݌݋݌	ߜ +  (4)																																												ସߝ
where hp is (log) house price, pop is (log) population, H is the (log) house stock, lp is (log) land 

price (per lot); ߝଵ, ߝଶ, ߝଷ, ߝସ are (permanent) exogenous shift variables; and α (>0), β (<0), γ 

(>0), δ (>0) are parameters. 

Equation (1) is an inverse demand function for housing, derived explicitly from a utility 

maximisation approach in Grimes and Aitken, in which house prices are a function of (i) the 

ratio of population to the housing stock and (ii) the user cost of capital; the latter is taken here to 

be exogenous to the locality and included in the shift variable, ߝଵ.  

Equation (2) reflects a spatial equilibrium approach in which population is determined by 

the level of house prices and by other area characteristics such as local productivity and amenities 

that are included in the shift variable, ߝଶ.  

Equation (3) is a supply function for housing based on a q-theory approach (see Grimes 

and Aitken). The supply of houses increases (or stagnates) until such time as the market price of 

houses is equated to the sum of all costs of obtaining a new house. These costs include the lot 

price (lp), construction costs and all other costs (e.g. including permitting costs) included in the 

shift variable, ߝଷ. 

Equation (4) is a land price equation in which the land price is an increasing function of 

local population. This relationship arises (as a mean price within a locality) from a standard urban 

economic model such as the Alonso-Muth-Mills model (e.g., see Wheaton, 1974). The shift 

variable, ߝସ, includes the effects on land scarcity (and hence land prices) of new planning 

constraints and also includes shocks to speculative or investment behavior in residential land.  
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Closed form solutions for the four variables are as follows (where  ߠ ≡ 1 − ܪ :(ߜߛߚ = ଵఈ ଵߝ + ఈିఊఋఈఏ ଶߝ − ଵିఈఉఈఏ ଷߝ − ఊ(ଵିఈఉ)ఈఏ ݌݋݌ ସ   (5)ߝ = ଵఏ ଶߝ + ఉఏ ଷߝ + ఉఊఏ ݌݈ ସ     (6)ߝ = ఋఏ ଶߝ + ఉఋఏ ଷߝ + ଵఏ ݌ସ      (7) ℎߝ = ఊఋఏ ଶߝ + ଵఏ ଷߝ + ఊఏ  ସ     (8)ߝ

 

Equation (8) has several implications for the long run determinants of house prices. First, 

a pure demand shock (ߝଵ), while appearing in the partial equilibrium housing demand equation, 

has no effect on long run house prices. This is due to the housing supply process in (3) through 

which new housing continues to be built until such time as house prices equal land prices and 

other costs. Unless these cost elements change directly in response to (or are correlated with) a 

demand shock then house prices must remain unchanged following a pure demand shock.10  

Second, noting that ߠ > 0,11  a positive population shock (ߝଶ) raises house prices. The 

larger is |β|, the smaller is the house price response to a population shock, since population 

itself partially adjusts downwards following the house price response to an initial upward 

population shock. The larger is the elasticity of house prices to land prices (γ) and/or the 

elasticity of land prices to population (δ), the larger is the reaction of house prices to a 

population shock. This can be seen by rewriting the coefficient on ߝଶ in (8) as: 

 
ఊఋఏ ≡ ଵ(ఊఋ)షభିఉ 

Thus, as γδ becomes larger, so does 
ఊఋఏ .  Together, γδ  represents the reaction of house 

prices to population through the channels of population affecting land prices and land prices 

affecting house prices. The former may reflect the severity of existing planning or geographical 

constraints that translate a population increase into land scarcity while the latter reflects the 

proportion of land prices in house prices (which will tend to be high in large and/or land-

constrained cities relative to other cities). 

                                                 
10 We note that if ߝଵ were a cost of capital shock (e.g. following a central bank interest rate change), then ߝଵ, ߝଷ, and ߝସ may be correlated. 
11 This follows since β<0, γ>0 and δ>0. 
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Third, the larger is the absolute value of β, γ and δ, the smaller is the responsiveness of 

house prices to a housing supply cost shock (ߝଷ). A high γ means that land costs form a high 

proportion of total housing costs so a rise in other costs has a lower proportionate effect on 

house prices than occurs with a lower γ. Together, the β and δ effects act through the 

responsiveness of population, and thence land prices, to a cost shock, inducing a partially 

offsetting land price movement following the rise in other construction costs. 

Fourth, a positive shock to land prices (ߝସ), for example through an increase in (onshore 

or offshore) investor demand for land, raises house prices. As in the previous case, higher values 

of β and δ will reduce the house price responsiveness to a given ߝସ shock through population-

related effects. Noting that the coefficient on ߝସ in (8) can be rewritten as	 ଵఊషభିఉఋ , we see that a 

higher γ leads to greater responsiveness of house prices to a land price shock. Thus cities in 

which land prices form a high proportion of house prices will have high house price 

responsiveness to a land price shock.   

The closed form solution for house prices in (8) demonstrates how an identical shock – 

for example to investor demand for land – that affects a range of cities can induce differing 

responses across those cities depending on the specific parameters within their population, house 

price and land price relationships. Thus differing migration and supply-related elasticities across 

cities can result in a weak form of single housing market even where all cities face identical 

shocks. 
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